
AIAA-99-4456

PRACTICAL ISSUES IN ESTIMATING FAULT CONTENT AND LOCATION IN
SOFTWARE SYSTEMS

Allen P. Nikora Norman F. Schneidewind John C. Munson
Jet Propulsion Laboratory Code IS/Ss Computer Science

California Institute of Naval Postgraduate School Department
Technology Monterey, CA 93943 University of Idaho

Pasadena, CA 91 109-8099 nschneid@nps.naw.mil MOSCOW, ID 83844-1010
Allen.P.Nikora@itd.nasa.gov

ABSTRACT

Over the past several years, techniques have been
developed to discriminate between fault-prone software
modules and those that are not, and to estimate a soft-
ware system’s residual fault content. These techniques
can be applied during the stages of a development effort
prior to test, thereby giving software managers greater
visibility into the systems being developed and allow-
ing them to exert more accurate and precise control into
their quality. There are practical issues involved in
implementing these measurement techniques in a pro-
duction development environment. In this paper, we
describe measurement techniques being implemented
on a development effort at the Jet Propulsion Labora-
tory, identify implementation issues, and describe pro-
posed resolutions to these issues.

INTRODUCTION

Over the past several years, techniques have been
developed to use measurements of a software system’s
structure to discriminate between fault-prone software
modules and those that are not, and to estimate a soft-
ware system’s residual fault content [Mun97, Mun98,
Nik98, Sch97, Sch991. These techniques can be ap-
plied during the earlier stages of a development effort
prior to test, thereby giving software managers greater
visibility into their projects and allowing them to exert
more accurate and precise control over the systems for
which they are responsible.

Copyright 1999 by the American Institute of Aeronau-
tics and Astronautics, Inc. The U.S. Government has a
royalty-free license to exercise all rights under the
copyright claimed herein for governmental purposes.
All other rights are reserved bv the copyright owner.

jmunson@cs.uidaho.edu

Boolean discriminant functions (BDFs) [Sch97]
and measures of Relative Critical Value Deviation
(RCVD) [Sch99] can be used in classifying the quality
of software during the quality control and prediction
process. Using failure data from the Space Transporta-
tion System Primary Avionics Software System (STS
PASS), these functions have been shown to provide
good accuracy (i.e., 3% error) for classifying low qual-
ity software. This is true because the BDFs consist of
more than just a set of metrics. They include additional
information for discriminating quality: critical values.
To form BDFs, nonparametric statistical methods are
used to:
1. identify a set of candidate metrics for further

analysis.
2. identify the critical values of the metrics. This

computation is based on the Kolmogorov-Smirnov
(K-S) test.

3. find the optimal BDF of metrics and critical values
based on the ability of the BDF to satisfy both sta-
tistical (i.e., ability to classify quality) and applica-
tion (i.e., quality achieved versus the cost to
achieve it) criteria.

Detailed maps of a software system’s residual fault
content at any point in time can be constructed from its
structural evolutionary and failure histories. We have
shown that it is possible to identify a relationship be-
tween the measured amount of change between two
successive versions of a software module and the num-
ber of faults inserted into that module, thereby provid-
ing an estimate of the rate of fault insertion [Mun98,
Nik98, Nik98al. This lets us estimate the number of
faults inserted into each module of the system at any
point during its development. The number of residual
faults in each module is computed by subtracting the
number of faults known to have been repaired in a
module (taken from the system’s failure history) from
the estimated number of faults inserted into that system.

1
American Institute of Aeronautics and Astronautics

mailto:nschneid@nps.naw.mil
mailto:Allen.P.Nikora@itd.nasa.gov
mailto:jmunson@cs.uidaho.edu

Software managers can use this information to more
accurately prioritize those modules to which fault iden-
tification and repair resources should be applied,
thereby making the most effective use of limited re-
sources.

Although our previous work has involved only the
implementation phase, these methods can make use of
software structural methods available prior to imple-
mentation, thereby allowing faulty modules to be iden-
tified early development phases. This is especially ap-
pealing since it has been repeatedly demonstrated that
removing faults during the latter phases of a software
development effort can be one or two orders of magni-
tudes more costly than removing those same faults
during earlier development phases [Boe81]. There are
practical issues that must be addressed prior to imple-
menting these methods on a software development ef-
fort. These involve:

Measuring workproducts such as specifications and
designs, which are often expressed in a mixture of
formal and informal notations, and may not be eas-
ily measurable.
Devising accurate, consistent, and practical meth-
ods of tracing discovered faults back to the point at
which they originally inserted into the system.
This is required in order to develop models relating
the fault insertion rate to measurements of a sys-
tem’s structural evolution.

To resolve the first issue, we are currently investi-
gating methods of translating the outputs of some of the
more popular tools for diagramatically representing a
system’s behavior (i.e., statecharts) into forms that can
easily be measured. With respect to the second issue,
we are refining an ad-hoc taxonomy developed as part
of our initial work and determining how it might be
formalized. In the remainder of this paper, we briefly
discuss the management techniques we are working to
implement on the Mission Data System (MDS), a soft-
ware development project at JPL which will produce
the next generation of planetary exploration flight and
ground software, discuss in more detail the practical
issues associated with these techniques, and describe
methods being considered for their resolution.

IDENTIFYING FAULT-PRONE
SOFTWARE COMPONENTS

Measurements of a software system’s structure can
be used to discriminate between fault-prone modules
and those that are not fault prone. During development,
structural measurements of the system are taken and
used to construct BDFs and the RCVD metrics. A BDF
is a Boolean function consisting of AND and OR op-

erators, module metric values, and metric critical values
that is used to classify the quality of software [Sch99].
A metric critical value is a value in the range of the
metric, estimated by using the inverse of the Kol-
mogorov-Smirnov distance that provides a threshold
between two levels (e.g., high and low) of the quality of
the software.

In forming BDFs, it is important to perform a mar-
ginal analysis when making a decision about how many
metrics to include. If many metrics are added at once to
the set, the contribution of individual metrics is ob-
scured. Also, the marginal analysis provides an effec-
tive rule for deciding when to stop adding metrics. If
certain metrics are dominant in their effects on classi-
fying quality, additional metrics are not needed to accu-
rately classify quality. Related to this property of
dominance is the property of concordance, which is the
degree to which a set of metrics produces the same re-
sult in classifying software quality. A high value of
concordance implies that additional metrics will not
make a significant contribution to accurately classifying
quality; hence, these metrics are redundant.

Note that the BDF provides only an accepvreject
decision on a component’s quality. The RCVD, which
measures the extent to which a measurement deviates
from its critical value, further indicates the extent to
which a component’s quality is above or below an ac-
ceptable level.

Taking the structural measurements necessary to
form BDFs and compute the RCVD is a straightforward
matter. Commercial measurement tools are readily
available, and these can be easily integrated into mod-
ern configuration management tools, such as CCC Har-
vest or ClearCase, to make the measurements without
requiring any extra effort on the part of the developers.
In selecting the measurement tool and setting up the
measurement process, the following decisions need to
be made:

0 At what point are the measurements to be
made (e.g., at the completion of a specified
build, at regular intervals)?

0 What structural measurements will be taken?
Table 2 in [Sch99] can be used as a guideline
for selecting appropriate measurements.
Whatever tool is selected should clearly iden-
tify how the measurements are taken.

The more difficult aspect is counting the number of
problem reports associated with each component so that
critical values for the BDFs may be computed. Our
experience indicates that the most effective way of
gathering this information is to choose a problem re-
porting system that integrates with the configuration
management system. Links are established between
each problem report and the components that are modi-

2
American Institute of Aeronautics and Astronautics

fied in response to that problem report. Relating prob-
lem reports to software components then becomes a
simple matter of querying the problem report database.
We are currently working to implement such a meas-
urement system for the MDS, the flight and ground
software being developed at JPL for the next generation
of planetary exploration spacecraft.

In principal, BDFs and RCVD can be extended to
development activities prior to implementation. If
structural information about specification or design
artifacts is available, and if technical reviews such as
Fagan inspections [Fag761 are regularly held to identify
faults in the workproducts, then BDFs can be formed
and RCVD values computed. While there is an abun-
dance of tools for measuring source code during the
implementation phase, we have found it significantly
more difficult to measure artifacts produced in earlier
development phases. In many development efforts, we
have observed that the syntax of the notations used in
producing designs and specifications is not as well-
defined as that of the source code, making it difficult to
define a complete or consistent set of measurements. In
many cases, designs and specifications are specified in
a mixture of natural language and other informal or
semi-formal notations. This compounds the problem by
introducing the possibility of incompatibilities between
the notations.

To resolve the measurement problem, we are
working in cooperation with the MDS to devise meth-
ods of measuring UML diagrams. Current MDS plans
call for producing specifications and designs in the
form of UML diagrams such as use cases, scenarios,
class diagrams, and statecharts. Unfortunately, cur-
rently available UML tools do not provide structural
measurements of the models they produce. However,
there are ways of translating some of the output of these
tools into forms that can be easily measured. For in-
stance, the MOCES tool [Mik97] can be used to trans-
late suitably-constrained statecharts produced by
Statemate into the Promela modeling language used by
the Spin model-checker [Ho197]. It is then a relatively
straightforward matter to design and implement a
structural analyzer to measure the statechart’s Promela
equivalent. We are investigating the practicality of
doing this type of measurement in the MDS environ-
ment.

ESTIMATING FAULT INSERTION
RATES AND FAULT CONTENT

Our previous work indicates that there is a strong
relationship between measurements of a system’s
structural evolution and the rate at which faults are in-
serted during development [Nik98, Nik98al. During

implementation, these measurements can be taken at the
level of individual modules (i.e., methods, functions).
These measurements act as a fault surrogate - they are
strongly related to the system’s fault content, and they
aggregate in the same manner as fault counts of indi-
vidual modules aggregate into a total fault count for the
system.

Using only measures of structural evolution, it is
possible to estimate the proportional fault burden of a
module at any point during its development. If the total
amount of change that module i has undergone with
respect to a baseline B is given by x:, then its propor-
tional fault burden d: is given by:

where N is the number of modules comprising the sys-
tem. This quantity can be compared to each module’s
proportion of faults discovered during test, g:. Com-
parisons of d: and gs can be made to identify those
modules to which additional fault identification re-
sources should be allocated: If d: is greater than g: ,
then additional resources should be allocated to module
i. Conversely, if g,” is greater than d: , then too many
resources have already been allocated to module i, and
no further fault identification effort is required until d,“
becomes equal or greater to d:.

Once repaired, faults can be identified and traced
back to the point at which they were first inserted into
the system. This information can be used to construct a
regression model relating the number of faults inserted
per unit of structural change [Nik98a]. The number of
faults inserted into the system at the module level can
then be estimated, as can the residual fault content of
each module. The modules with the largest estimated
residual fault content can be identified, and allocated
fault identification and repair resources proportional to
their residual fault content.

The structural evolution of the software at the
module level can be measured transparently to the de-
velopers. Modern configuration management tools
make it straightforward matter to make structural meas-
urements as part of checking a change package into the
repository. These tools can be set up to start the meas-
urement tool each time a developer checks a source file
back into the repository, thereby making it unnecessary
for the developer to perform any extra work related to
measurement. The measurement history is automati-
cally recorded, ready for the use by the test and quality
assurance staff. We are currently working with MDS to
integrate a measurement tool we have developed for
this purpose, EMA, with the MDS configuration man-
agement system.

3
American Institute of Aeronautics and Astronautics

Tracing faults back to their point of origin is
somewhat more complicated. Ideally, a problem report
would identify each fault repaired in response to the
reported failure, but we have found that this is not done
for almost of the software development efforts we have
studied. However, most development efforts require
that the source code files that were changed in response
to a reported failure be identified. It therefore becomes
necessary to examine the changes made in response to a
reported failure to identify the faults that have been
repaired. We have developed a set of fault counting
and identification rules to help analysts in this activity
[Nik98]. Once the faults have been identified, it is nec-
essary to find the point at which they were first inserted
into the source code, so that the relationship between
the amount of structural change made to the system and
the number of faults inserted can be established. This
means searching all previous versions of a module prior
to the point at which the fault was corrected. Unfortu-
nately, this is largely a manual technique at this point.
As part of our future work, we hope to formalize the
fault counting and identification rules we have devel-
oped. We hope to develop a search tool which analysts
could use to automate searches of all previous revi-
sions of a module.

In identifying and counting faults, it is necessary to
separate changes due to fault repair from those made
due to change requests. We are developing a problem
resolution process for the MDS that would give priority
to fault repair. Before modifying or enhancing a com-
ponent, developers should first repair known faults in a
component and submit the repaired component to the
repository. Developers would then check out the re-
paired component to which enhancements or other
modifications could be made. In addition to reducing a
source of noise in the measurements, it is a matter of
good engineering practice to repair a component con-
taining known faults before attempting to enhance it.

MEASURING TEST EFFICIENCY

Our recent work has also shown that test efficiency
can be measured by comparing an ideal execution pro-
file to the actual profile observed while executing the
software during test [Mun97, Mun98, Nik98al. The
ideal execution profile is constructed from a detailed
history of the software’s structural evolution during its
development. Since these measurements have been
shown to be strongly related to the rate at which faults
are inserted into the software system during its devel-
opment, each module should then be tested according to
the amount of change it has undergone since the last
time it was tested. Suppose that a system about to enter
test consists of a set of modules A, and that the cumu-

lative amount of change that has been made to all the
modules in A since the last round of testing is X. If a
particular module a has incurred a total amount of
change x since the last round of testing occurred, the
proportion of time that should be spent executing mod-
ule a is x/X. This ideal profile can then be quantita-
tively compared with the profile observed during test.
The testing staff can then:

Calculate a numerical value for the effectiveness of
the test procedure(s).

0 Identify those modules that were insufficiently
tested, and the extent to which they were insuffi-
ciently tested.

0 Identify those modules in which too much execu-
tion time was spent during test, and by how much
the ideal execution time was exceeded.
The structural evolution of the source code is

measured as described above. Measuring the execution
profile may be somewhat more invasive, in that the
software needs to be monitored during execution. The
ideal way of accomplishing this is to design the neces-
sary instrumentation into the software. However, this
requires some effort to design and implement the soft-
ware. Traditionally, software development efforts have
not seen any benefit to devoting scarce resources to a
capability that is not seen to directly affect the system’s
functionality. Another way of accomplishing this is to
compile the software with instrumentation that will
record the transitions from module to module during
execution. Comparatively little effort is required to link
the instrumentation package into the software system.
However, the instrumentation may alter the software’s
behavior. This is particularly true in real time systems,
for which changes in timing relationships may alter the
system’s behavior in unpredictable ways.

A third way of observing a system’s execution pro-
file is to build the necessary instrumentation into the
testbed on which the system is run during the various
testing phases. This is attractive for the following rea-
sons:

There is no need to link an instrumentation pack-
age into the software. The system’s timing rela-
tionships will not be affected.

0 Depending on the nature of the testbed, it may be
possible to capture more extensive information
about the system’s behavior during execution than
would be possible with either of the other two
methods. There is a limit to how much information
may be extracted from a system using built-in or
linked-in instrumentation before its behavior starts
to be adversely affected. However, if the instru-
mentation is implemented on the testbed, it is the
testbed’s rather than the system’s performance that
is affected. Even if the instrumentation places a

4
American Institute of Aeronautics and Astronautics

relatively high load on the testbed, the system un-
der test will behave in the same fashion as if the in-
strumentation placed a small load on the testbed.

0 If the testbed is designed to be used for multiple
missions, the instrumentation becomes part of the
multimission capability. It is easier to use a capa-
bility that is already available rather than rebuild-
ing it for each new mission.

We are working to implement this trace capability
on the bit-level simulator that will be produced as part
of the test environment for the MDS. We believe that
only the following requirements need to be levied on
the simulator to implement this capability:

During execution, the simulator shall log to a user-
specified file the following information each time
control is passed from module to module:
0 The address to which control is transferred.

The time at which control is transferred.
NOTE: Time may be expressed in terms other
than seconds or fractions of seconds - it would
be perfectly satisfactory to express elapsed
time during a test as the cumulative number of
(simulated) CPU clock cycles, for instance.

0 Users shall be able to select whether or not they
want to log an execution profile prior to starting a
test.

Of course, there will be constraints on the size of
the log file that can be produced, which will require
decisions on the following matters:
0 Should the user be allowed to specify the maxi-

mum size of the log file prior to a test run, and how
should that size be specified (e.g., size in bytes,
size in number of transitions, amount of execution
time to be recorded)? What should be the simula-
tor’s response if the desired file size is too large?

0 Should there be manual capabilities to start and
stop logging?
Once the log file becomes full, should logging
stop, or continue at the beginning of the file?
Should the user be given a choice?

There will also be issues relating to the perform-
ance of the simulator that will need to be addressed.
Although a large instrumentation load on the simulator
will not affect the behavior of the system under test, it
may affect the amount of time that it takes to execute a
test. In a real development effort, there will always be
pressure to adhere to the schedule, and if the instru-
mentation produces delays in completing tests, there
will be pressure to avoid using it.

Irrespective of the programming language chosen,
we believe that this will be a relatively simple capabil-

ity to implement in a bit-level simulator. This is be-
cause we will be working at low level of abstraction by
trapping the small, well-defined set of instruction(s)
that are used to transfer control between modules,
rather than attempting to identify such transfers at a
higher level of abstraction.

Finally, note that none of the analysis capabilities
are to be implemented in the simulator. If the log file is
available to members of the test and quality assurance
staff, analysis of the results can be done in non-real
time.

ESTIMATING RISK OF EXPOSURE TO
RESIDUAL FAULTS

Once estimates of residual fault content have been
made at the module level, this information can be com-
bined with dynamic information obtained during test
and fielded use to estimate the system’s risk of expo-
sure to residual faults [Nik98]. The practical issues
involved here are the same as those of computing test
efficiency, namely obtaining measurements of the sys-
tem’s structural evolution and its execution profile
during test and fielded use. As previously noted,
measuring the system’s structural evolution can be done
as part of the configuration management process, trans-
parently to the development team. For MDS, we intend
to build into the bit-level simulator on which the flight
components will be tested the capability of measuring
and recording the execution profile of the system under
test.

MEASURING REQUIREMENTS RISK

One of the software maintenance problems of any
development organization is to evaluate the risk of im-
plementing requirements changes. These changes can
affect the reliability and maintainability of the software.
As part of our work on MDS, we are determining the
applicability of the risk assessment used on the STS
flight software. To assess the risk of change, the soft-
ware development contractor uses a number of risk
factors, which are described below. The risk factors
were identified by agreement between NASA and the
development contractor based on assumptions about the
risk involved in making changes to the software. This
formal process is called a risk assessment. No require-
ments change is approved by the change control board
without an accompanying risk assessment. During risk
assessment, the development contractor attempts to
answer such questions as: “Is this change highly com-
plex relative to other software changes that have been
made on the Shuttle?” If this is the case, a high-risk
value would be assigned for the complexity criterion.

5
American Institute of Aeronautics and Astronautics

To date this qualitative risk assessment has proven use-
ful for identifying possible risky requirements changes
or, conversely, providing assurance that there are no
unacceptable risks in making a change. However, there
has been no quantitative evaluation to determine
whether, for example, high risk factor software was
really less reliable and maintainable than low risk factor
software. In addition, there is no model for predicting
the reliability and maintainability of the software, if the
change is implemented. The intent of our work with
MDS is to address both of these issues.

We had considered using requirements attributes
like completeness, consistency, correctness, etc., as risk
factors [Dav90]. While these are useful generic con-
cepts, they are difficult to quantify. Although some of
the following risk factors also have qualitative values
assigned, there are a number of quantitative factors, and
many of the factors deal with the execution behavior of
the software (i.e., reliability), which is our research
interest.

The following are the definitions of the risk factors,
where we have placed the factors into categories and
have provided our interpretation of the question the
factor is designed to answer. In addition, we added the
risk factor requirements specijications techniques be-
cause we feel that this one could represent the highest
reliability risk of all the factors if a technique leads to
misunderstanding of the intent of the requirements. If
the answer to a yesho question is “yes”, it means this is
a high-risk change with respect to the given factor. If
the answer to a question that requires an estimate is an
anomalous value, it means this is a high-risk change
with respect to the given factor.

Complexity Factors

0 Qualitative assessment of complexity of
change (e.g., very complex)
- Is this change highly complex relative to
other software changes that have been made
on the Shuttle?

0 Number of modifications or iterations on the
proposed change
- How many times must the change be modi-
fied or presented to the Change Control Board
(CCB) before it is approved?

Size Factors

0 Number of lines of code affected by the
change
- How many lines of code must be changed to
implement the change?

Size of data and code areas affected by the

- How many bytes of existing data and code
are affected by the change?

change

Criticality of Change Factors

0 Whether the software change is on a nominal
or off-nominal program path (i.e., exception
condition)
- Will a change to an off-nominal program
path affect the reliability of the software?

0 Operational phases affected (e.g., ascent, orbit,
and landing)
- Will a change to a critical phase of the mis-
sion (e.g., ascent and landing) affect the reli-
ability of the software?

Locality of Change Factors

The area of the program affected (i.e., critical
area such as code for a mission abort se-
quence)
- Will the change affect an area of the code
that is critical to mission success?
Recent changes to the code in the area affected
by the requirements change
- Will successive changes to the code in one
area lead to non-maintainable code?
New or existing code that is affected
- Will a change to new code (i.e., a change on
top of a change) lead to non-maintainable
code?
New or existing code that is affected
- Will the change be on a path where only a
small number of system or hardware failures
would have to occur before the changed code
is executed?

Requirements Issues and Function Factors

0 Number and types of other requirements af-
fected by the given requirement change (re-
quirements issues)
- Are there other requirements that are going
to be affected by this change? I f so, these re-
quirements will have to be resolved before im-
plementing the given requirement.

0 Possible conflicts among requirements
changes (requirements issues)
- Will this change conflict with other require-
ments changes (e.g., lead to conflicting opera-
tional scenarios)

6
American Institute of Aeronautics and Astronautics

Number of principal software functions affected

- How many major software functions will
have to be changed to make the given change?

by the change

Performance Factors

0 Amount of memory required to implement the
change
- Will the change use memory to the extent that
other functions will be not have suficient
memory to operate effectively?

- Will the change use CPU cycles to the extent
that other functions will not have suficient
CPU capacity to operate effectively?

0 Effect on CPU performance

Personnel Resources Factors

0 Number of inspections required to approve the
change.

0 Manpower requirements required to imple-
ment the change
- Will the manpower required to implement the
software change be signijicant?

Manpower required to verify and validate the

- Will the manpower required to verify and
validate the software change be signijicant?

correctness of the change

Tools Factor

0 Any software tools creation or modification
required to implement the change
- Will the implementation of the change re-
quire the development and testing of new
tools?

flow diagram, state chart, pseudo code, control
diagram).
- Will the requirements specijication method
be dificult to understand and translate into
code ?

0 Requirements specifications techniques (e.g.,

We have access to several sets of data from the
Space Shuttle of the following types:
A. Pre-release and post release failure data from the

Space Shuttle from 1983 to the present.
B. Risk factors for the Shuttle Three Engine Out Auto

Contingency and Single Global Positioning System
software. This software was released to NASA by
the developer on 10/18/95 and 3/5/97, respectively.

C. Metrics data for 1400 Shuttle modules, each with
26 metrics.

We will use the Shuttle data to test our hypothesis
about the ability of risk factors to discriminate between
levels of reliability and complexity, and will work with
the MDS to apply our findings. We will also attempt to
identify more quantitative risk factors than those given
above, based on structural measurements of the UML
specifications and designs that will be produced by the
MDS. This project provides a rare opportunity to work
with the software development team and testers to es-
tablish a measurement plan form the inception of a
project as opposed to the usual situation of having to
intervene in an on-going project. We plan to instrument
the software system for obtaining measurements
throughout the development and maintenance process.

CONCLUSION

This research is another in the series of our soft-
ware measurement projects that has included software
reliability modeling and prediction, metrics analysis,
risk analysis, and maintenance stability analysis
[Mun98, Nik98, Sch97, Sch981. We have been involved
in the development and application of software reliabil-
ity models for many years [Sch93, Sch921. Our models,
as is the case in general in software reliability, use fail-
ure data as the driver. This approach has the advantage
of using a metric that represents the dynamic behavior
of the software. However, this data is not available until
the test phase. Predictions at this phase are useful but it
would be much more useful to predict at an earlier
phase - preferably during requirements analysis-when
the cost of error correction is relatively low. Thus, there
is great interest in the software reliability and metrics
field in using static attributes of software in reliability
modeling and prediction.

Our earlier work indicates that structural measure-
ments of a software system are strongly related to the
system’s fault content. The techniques to analyze this
information and produce the desired estimates are based
on well-understood multivariate analysis techniques,
and are appropriate performed by members of a soft-
ware quality assurance team. The structural measure-
ments required to make these estimates can be easily
collected as part of the development process, requiring
little or no additional effort on the part of the develop-
ment staff. Estimates of proportional fault content can
be made by using structural information alone. We are
currently working with the MDS project at JPL to im-
plement these measurement mechanisms.

The failure and fault information required to cali-
brate the models, on the other hand, may be more diffi-
cult to collect. Modern configuration management and
problem reporting systems can automate much of the

7
American Institute of Aeronautics and Astronautics

data collection process - failure reports can be associ-
ated with the files and modules that were changed in
response to a failure report. Although this will require
developers to provide that information on problem re-
port forms as part of problem identification and repair
activity, this does not represent any additional effort in
that developers are already required to provide this in-
formation.

Identification and counting of the faults, however,
is still largely a manual process, as is tracing them back
to their points of origin. Although this is work that
need not be performed by the development team, re-
sources do need to be allocated to the quality assurance
staff members that will perform this type of analysis.
Our experience indicates that for a project the size of
MDS, roughly one or two additional analysts would
have to be added to a development team several dozen
strong. As part of our future work, we hope to develop
automated techniques for assisting analysts in this area.

ACKNOWLEDGMENTS

The research described in this paper was carried
out at the Jet Propulsion Laboratory, California Institute
of Technology. Portions of the work were sponsored
by the National Aeronautics and Space Administra-
tion’s IV&V Facility

[Boe81]

[Dav90]

[Fag761

[Ho197]

[Mik97]

[Mun97]

REFERENCES

B. W. Boehm, Software Engineering
Economics, Prentice-Hall, Inc., 198 1
Alan Davis, Software Requirements:
Analysis and Specifications, Prentice-
Hall, Englewood Cliffs, NJ, 1990
M. E. Fagan, “Design and Code Inspec-
tions to Reduce Errors in Program Devel-
opment,” IBM Systems Journal, Volume
15, Number 3, pp 182-211, 1976
G. Holzmann, “The Model Checker
Spin,” IEEE Trans. on Software Engi-
neering, Vol. 23, No. 5, May 1997, pp.

E. Mikk, Y. Lakhnech, and M. Siegel,
“Towards Efficient Modelchecking State-
charts: A Statecharts to Promela Com-
piler,” In 3rd International SPIN Work-
shop, University of Twente, April 97
J. C. Munson and G. A. Hall, “Estimating
Test Effectiveness with Dynamic Com-
plexity Measurement,” Empirical Soft-
ware Engineering Journal. Feb. 1997

279-295

Mun981

Nik981

[Nik98a]

[Sch92]

[Sch93]

[Sch97]

[Sch98]

J. Munson, A. Nikora, “Estimating Rates
of Fault Insertion and Test Effectiveness
in Software Svstems”, proceedings of the
Fourth ISSAT International Conference
on Quality and Reliability in Design, Se-
attle, WA, August 12-14, 1998
A. Nikora, N. Schneidewind, J. Munson,
“IV&V Issues in Achieving High Reli-
ability and Safety in Critical Control
System Software,” JPL D-15740, final
report, January 19, 1998
0 Volume 1 - “Measuring and Evalu-

ating the Software Maintenance Pro-
cess and Metrics-Based Quality
Control”

0 Volume 2 - “Measuring Defect In-
sertion Rates and Risk of Exposure to
Residual Defects in Evolving Soft-
ware Systems”

0 Volume 3 - “Appendices”
A. Nikora, J. Munson, “Determining
Fault Insertion Rates for Evolving Soft-
ware Systems”, proceedings of the Ninth
International Symposium on Software
Reliability Engineering, Paderborn, Ger-
many, November 4-7,1998
Norman F. Schneidewind and T. W.
Keller, “Application of Reliability Mod-
els to the Space Shuttle”, IEEE Software,

Norman F. Schneidewind, “Software Re-
liability Model with Optimal Selection of
Failure Data”, IEEE Transactions on
Software Engineering, Vol. 19, No. 11,
November 1993, pp. 1095-1 104
Norman F. Schneidewind, “Reliability
Modeling for Safety Critical Software”,
IEEE Transactions on Reliability, March
1997
Norman F. Schneidewind, “How to
Evaluate Legacy System Maintenance”,
IEEE Software, Vol. 15, No. 4,
July/August 1998, pp. 34-42. Also trans-
lated into Japanese and reprinted in: Nik-
kei Computer Books, Nikkei Business
Publications, Inc., 2-1-1 Hirakawacho,
Chiyoda-Ku, Tokyo 102 Japan, 1998, pp.

Vol. 9, NO. 4, July 1992 pp. 28-33

232-240

8
American Institute of Aeronautics and Astronautics

[Sch99] Norman F. Schneidewind, “Predicting
Deviations in Software Quality by Using
Critical Value Deviation Metrics, to be
published in the proceedings of the Tenth
International Symposium on Software
Reliability Engineering, Boca Raton, FL,
November 1-4, 1999.

9
American Institute of Aeronautics and Astronautics

